Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Ecosystems are abruptly changing due to invasive species and global climate change. In lakes, invasive Rainbow Smelt Osmerus mordax can cause negative ecosystem effects through competitive and predatory interactions with native species leading to food web shifts away from native species dominance, altered zooplankton communities, and the decline or extirpation of native cool and coldwater fishes. We conducted two whole-lake removals of invasive Rainbow Smelt and simultaneous introductions of native Cisco Coregonus artedi through stocking. About 327 and 1.6 adult Rainbow Smelt/ha were removed and about 45 adult Cisco/ha were stocked over 4 years into the two experimental lakes. In one system, native Yellow Perch Perca flavscens relative abundance and density significantly increased by 556% and 143% post-manipulation, respectively. In the other system, native Walleye Sander vitreus relative abundance increased by 26% and became consistently present in the pelagic zone post-manipulation (allowing for density estimation). Rainbow Smelt relative abundance and density decreased by >85% in both experimental lakes. The two ecosystems shifted to native species dominance while invasive Rainbow Smelt became insignificant components of the food webs. In these two intensive whole-lake manipulations, we applied the Resist–Accept–Direct (RAD) climate adaptation framework to test an applicable ecological adaptation strategy and used panarchy theory as an ecologically grounded pathway to purposefully direct ecosystem transformation. We used this holistic management framework to better understand and manage undesired ecological change—“food web thinking.” In the context of our study, two ecosystems were purposefully directed towards native food web structures, species interactions, and processes, which mitigated Rainbow Smelt driven negative effects.more » « lessFree, publicly-accessible full text available January 22, 2026
-
Abstract Information on yellow perchPerca flavescenspopulation dynamics and responses to various abiotic and biotic factors in oligotrophic, north‐temperate inland lakes is limited. Water level fluctuations are known to influence available habitat and biological communities within the littoral zones of lakes, yet research is lacking for yellow perch in Wisconsin. The goal of our study was to characterize yellow perch population‐level responses to natural water level fluctuations in four northern Wisconsin lakes using a 39‐year time series. On average, increasing water level periods correlated with lower mean fyke net and gill net relative abundances (catch‐per‐unit‐effort), though generally not statistically significant. Yellow perch mean relative weight varied among lakes and was significantly greater during increasing water level periods for all lakes except one. The lack of statistically significant findings potentially suggests a buffering mechanism of north‐temperate oligotrophic lakes due to their small surface area to volume ratios, relative lack of nutrients, and(or) littoral structural habitat compared to other systems (e.g., shallow eutrophic lakes). Our results suggest that natural water level fluctuations may not be an environmental concern for yellow perch populations in some north‐temperate oligotrophic inland lakes.more » « less
-
Abstract The phenology of critical biological events in aquatic ecosystems is rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches (i.e., mismatches in the timing of peak prey and predator abundances), causing recruitment failures in important fisheries. We assessed changes in the spawning phenology of walleye (Sander vitreus) in 194 Midwest US lakes to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice‐off timing, lake physical characteristics, and population stocking history. Ice‐off phenology shifted earlier, about three times faster than walleye spawning phenology over time. Spawning phenology deviations from historic averages increased in magnitude over time, and large deviations were associated with poor offspring survival. Our results foreshadow the risks of increasingly frequent natural recruitment failures due to mismatches between historically tightly coupled spawning and ice‐off phenology.more » « less
-
Climate change is leading to shifts in not only the average timing of phenological events, but also their variance and predictability. Increasing phenological variability creates a stochastic environment that is critically understudied, particularly in aquatic ecosystems. We provide a perspective on the possible implications for increasingly unpredictable aquatic habitats, including more frequent trophic asynchronies and altered hydrologic regimes, focusing on ice-off phenology in lakes. Increasingly frequent phenological extremes may limit the ability of organisms to optimize traits required to adapt to a warming environment. Using a unique, long-term ecological dataset on Escanaba Lake, WI, USA, as a case study, we show that the average date of ice-off is shifting earlier and becoming more variable, thus altering limnological conditions and yielding uncoupled food web responses with ramifications for fish spawn timing and recruitment success. A genes-to-ecosystems understanding of the responses of aquatic communities to increasingly variable phenology is needed. Our perspective suggests that management for diversity, at the intra- and interspecific levels, will become paramount for conserving resilient aquatic ecosystems.more » « less
-
null (Ed.)Recreational fisheries are social-ecological systems (SES), and knowledge of human dimensions coupled with ecology are critically needed to understand their system dynamics. Creel surveys, which typically occur in-person and on-site, serve as an important tool for informing fisheries management. Recreational fisheries creel data have the potential to inform large-scale understanding of social and ecological dynamics, but applications are currently limited by a disconnect between the questions posed by social-ecological researchers and the methods in which surveys are conducted. Although innovative use of existing data can increase understanding of recreational fisheries as SES, creel surveys should also adapt to changing information needs. These opportunities include using the specific temporal and spatial scope of creel survey data, integrating these data with alternative data sources, and increasing human dimensions understanding. This review provides recommendations for adapting survey design, implementation, and analysis for SES-focused fisheries management. These recommendations are: (1) increasing human dimensions knowledge; (2) standardization of surveys and data; (3) increasing tools and training available to fisheries scientists; and (4) increasing accessibility and availability of data. Incorporation of human dimensions information into creel surveys will increase the ability of fisheries management to regulate these important systems from an integrated SES standpoint.more » « less
An official website of the United States government
